The Case for a Flexible Low-Level

Backend for Software Data Planes

Sean Choi?, Xiang Long?, Muhammad Shahbaz?,
Skip Booth*, Andy Keep?, John Marshall*, Changhoon Kim?

\g«“ 4
&,
(<]

3 4 5
il " BAREFOOT
CI1SCO. NETWORKS

Why software data planes?

* VM hypervisors

* Cost savings with commodity general
purpose processing units — where

desired throughput < ~100 Gbps

* Prototyping protocol design

© Virtual Ports
o Physical Port

* Prototyping hardware DP architecture

OvS

Open vSwitch

Software Switch

PISCESu

C ":Open Flow

n /

[1] PISCES. ACM SIGCOMM 2016.

Software switch DSLs

lpm;

ingress {
v (routing) ;

High-level, close to protocol

Egress Selection

_______ Run Time i
! Forwarding rules !
! ! l |

1]

1 1

i i
| P ¥ 0
A U
N R Queues i
P > S and/or p
u E Buffers U
T R | Ingress Match+Action Egress Match+Action T

Packet Modifications + Packet Modifications |

Abstract forwarding model

Nice for programmers...

* Familiar and logical model in mind when programming,
e.g. match/action pipelines

 Can specify packet data without worrying about
implementation

* Portable code across platforms

Not so nice for compilers

* Abstract forwarding model not designed for
e.g. CPU-based architectures

* Limited in expressiveness
* Insulated from underlying low-level APIs

* Result: Difficult to realize full performance potential of
underlying hardware

Hypothesis

If software switches exposed more
low-level characteristics to
the data plane compiler

improvements are possible in
performance and features

Our contribution

* |dentify a software switch that can be programmed
at low-level w.r.t to the hardware architecture

* Create compiler targeting that switch to allow it to
support high-level data plane programs

 Compare performance

Target Switch: Vector Packet Processor (VPP)

 QOpen sourced by Cisco

* (Can be programmed at low-level

10

The Universal Dataplane

 Part of the FD.io project

Vector Packet Processing (VPP) Platform

dpdk-input

[TT T eed TT]

 Modular packet
processing node

graph abstraction

Vector Packet Processing (VPP) Platform

dpdk-input

[TT T eed TT]

e Each node can execute

c-input

almost arbitrary C code

on vectors of packets sy

Vector Packet Processing (VPP) Platform

dpdk-input

[TT T eed TT]

* Codeisdivided into

c-input

nodes to optimize for i-

and d-cache locality

ransmi

Vector Packet Processing (VPP) Platform

Packet Vector

[TT T eed TT]

dpdk-input

Custom-input ip4-input ip6-input llc-input

|

|

|

|

|

|

O
|

ip6-lookup |
|

|
O
ip6-rewrite- I

transmit I

|

|

|

_______ Custom Plugin = = = = = = =" — — Standard VPP Nodes
‘ dpdk-output

* Extensible packet processing through first-class plugins

Node 1 Node 2 Node i

Node j

Node k

Vector Packet Processing (VPP) Platform

* Proven performancelll

* Multiple MPPS from a single x86 64 core
1 core: 9 MPPS ipv4 in+out forwarding
2 cores: 13.4 MPPS ipv4 in+out forwarding
4 cores: 20.0 MPPS ipv4 in+out forwarding

e > 100Gbps full-duplex on a single physical host

 Qutperforms Open vSwitch in various scenarios

[1] https://wiki.fd.io/view/VPP/What is VPP%3F

Vector Packet Processing (VPP) Platform

Disadvantage: large burden on the programmer

Requires knowledge from different fields:

protocols, operating systems, processor

architecture, C compi

Some Magic Requirec

er optimization....

for good performance

while (n_left_from >= 4 && n_left_to_next >= 2)
{
vlib_buffer_t * p@, * pl;
e e ip4_header_t * ip®, * ipl;
SO I I le IVI a g I C Re q u I re d __attribute_ ((unused)) tcp_header_t * tcp@, x tcpl;
ip_lookup_next_t next®, nextl;
ip_adjacency_t * adj@, * adjl;
ip4_fib_mtrie_t * mtrie@, * mtriel;
ip4_fib_mtrie_leaf_t leaf@, leafl;
ip4_address_t * dst_addr@, *xdst_addrl;
__attribute_ ((unused)) u32 pi@, fib_index®, adj_index®, is_tcp_udp®;
__attribute_ ((unused)) u32 pil, fib_index1, adj_index1, is_tcp_udpl;
u32 flow_hash_config@, flow_hash_configl;
u32 hash_c@, hash_cl;
u32 wrong_next;

vlib_buffer_t * p2, * p3;

p2 = vlib_get_buffer (vm, from[2]);

M anua I Iy fEtCh tWO packets p3 = vlib_get_buffer (vm, from[31);

vlib_prefetch_buffer_header (p2, LOAD);
vlib_prefetch_buffer_header (p3, LOAD);

CLIB_PREFETCH (p2->data, sizeof (ip@[@]), LOAD);
CLIB_PREFETCH (p3->data, sizeof (ip@[@]), LOAD);

pi@ = to_next[0] = from[@];
pil = to_next[1] = from[1];

p@ = vlib_get_buffer (vm, pi@);
1 = vlib_get_buffer (vm, pil);

o

Consequence of being low-level

ip@ = vlib_buffer_get_current (p@);
ipl = vlib_buffer_get_current (pl);

Ease of programmability sacrificed
for performance at low-level

Can a high-level DSL compiler help?

' —'ﬂ i
- 10
[A / The Universal Dataplane

Programmable Vector Packet Processor
(PVPP)

PVPP structure

" VPP Plugin
- Cog
rogram Templates
!
q BMv 2 BMv 2 1 JSON-VPP
i;on?}én Mid-end . Back-end - Tl
ompiier Compiler Compiler JSON ompiier
R Reference P4 —
Compiler (P4C) C Files
Standard compiler optimizations are also LGS
Plugin
applied, e.g. redundant table removal SRRy

Experimental Setup

MoonGen - 10Gx3 PVPP

10Gx3

Sender/Receiver | I
DPDK
M1 M2

CPU: Intel Xeon E5-2640 v3 2.6GHz

Memory: 32GB RDIMM, 2133 MT/s, Dual Rank
NICs: Intel X710 DP/QP DA SFP+ Cards

HDD: 1TB 7.2K RPM NLSAS 6Gbps

MoonGen
Sender/Receiver

M3

Benchmark Application

Parse
Ethernet/
IPv4

IPv4 _match

Match: ip.dstAddr
Action: Set_nhop
drop

A 4

Destination MAC

Match: ip.dstAddr
Action: Set_dmac
drop

\ 4

Source MAC

Match: egress_port
Action: Set_dmac
drop

Baseline Performance

m Single Node m Multiple Node

64 byte packets, single 10G port

o

7.86

(o]

7.05

Throughput (Mpps)
w H (6,] <)} ~N

N

[y

64
Packet Size (Bytes)

Vector Packet Processing (VPP) Platform

dpdk-input

[TT T eed TT]

e Each node can execute

c-input

almost arbitrary C code

on vectors of packets sy

Throughput (Mpps)

Optimized Performance

12

10

(o]

7.86
I 7.05

Baseline

64 byte packets, single 10G port

m Single Node m Multiple Node

o8 10.01 10.21
9.51 9.51 5
9.25 ;
3.80 8.89 9.02 9.20
| | I I I I
Removing Reducing Metadata Loop Unrolling Bypassing Reducing Pointer Caching Logical HW

Redundant Tables Access Redundant Nodes Dereferences Interface

Scalability

64 byte packets across 3 x 10G ports

H Single Node ® Multiple Node
60

53.11

49.34

wn
o

44.23

40.69
35.83
33.41
26.40
24.14

17.03 16.57
) ’ = l l
0 . .

4 5

Number of CPU cores

Y
o

Throughput (Mpps)
w
o

N
o

Throughput (Mpps)

Performance Comparison

70

60

50

4

o

3

o

2

o

1

o

o

63.
59.53

6

49

30.22

4

B PVPP m PISCES (with Microflow)

49.31
47.23

128

3471 34.72

192

Packet Size (Bytes)

30.22

M PISCES (without Microflow)

30.20

26.78 26.78

256

26.78

Future work

* Microbenchmarking VPP to inform VPP-specific optimizations

P4 compiler annotations for low-level constructs

 Explore when multi-node compilation is beneficial for PVPP

* Demonstrate use cases where OVS microflow cache is
defeated — to show PVPP is just as programmable without

resorting to separated fast/slow path

Summary

High-level DSLs are great for programmers of software
switches, but lack expressivity for optimizations.

Low-level software switches such as VPP are performant but
hard to program.

We propose that best of both is possible with PVPP.
Comparable to state-of-art performance achieved but still

work in progress.

