
The Case for a Flexible Low-Level
Backend for Software Data Planes

Sean Choi1, Xiang Long2, Muhammad Shahbaz3,
Skip Booth4, Andy Keep4, John Marshall4, Changhoon Kim5

1 2 3 4 5

Virtual PortsPhysical Port

Software Switch

VM VM

Why software data planes?
• VM hypervisors
• Cost savings with commodity general

purpose processing units – where
desired throughput < ~100 Gbps

• Prototyping protocol design
• Prototyping hardware DP architecture

PISCES[1]

Software Switch

[1] PISCES. ACM SIGCOMM 2016.

Software switch DSLs

High-level, close to protocol Abstract forwarding model

Nice for programmers…
• Familiar and logical model in mind when programming,e.g. match/action pipelines
•Can specify packet data without worrying about implementation
•Portable code across platforms
•…

Not so nice for compilers
•Abstract forwarding model not designed for e.g. CPU-based architectures
• Limited in expressiveness
• Insulated from underlying low-level APIs
•Result: Difficult to realize full performance potential of underlying hardware

If software switches exposed more low-level characteristics tothe data plane compiler
improvements are possible in performance and features

Hypothesis

Our contribution
• Identify a software switch that can be programmed

at low-level w.r.t to the hardware architecture
• Create compiler targeting that switch to allow it to

support high-level data plane programs
• Compare performance

Target Switch: Vector Packet Processor (VPP)
• Open sourced by Cisco
• Can be programmed at low-level

• Part of the FD.io project

Vector Packet Processing (VPP) Platform

• Modular packet
processing node
graph abstraction

… dpdk-input

ip6-inputip4-input llc-input

ip6-lookup

ip6-rewrite-transmit

…

dpdk-output

Vector Packet Processing (VPP) Platform

• Each node can execute
almost arbitrary C code
on vectors of packets

… dpdk-input

ip6-inputip4-input llc-input

ip6-lookup

ip6-rewrite-transmit

…

dpdk-output

Vector Packet Processing (VPP) Platform

• Code is divided into
nodes to optimize for i-
and d-cache locality

… dpdk-input

ip6-inputip4-input llc-input

ip6-lookup

ip6-rewrite-transmit

…

dpdk-output

Vector Packet Processing (VPP) Platform
…Packet Vector dpdk-input

ip6-inputip4-input llc-input

ip6-lookup

ip6-rewrite-transmit

…

dpdk-output

Standard VPP Nodes

…
Custom-input

Node 1 Node 2 Node i

Node j
Node k

Custom Plugin

• Extensible packet processing through first-class plugins

Vector Packet Processing (VPP) Platform
• Proven performance[1]

[1] https://wiki.fd.io/view/VPP/What_is_VPP%3F

• Multiple MPPS from a single x86_64 core

• > 100Gbps full-duplex on a single physical host
• Outperforms Open vSwitch in various scenarios

1 core: 9 MPPS ipv4 in+out forwarding2 cores: 13.4 MPPS ipv4 in+out forwarding4 cores: 20.0 MPPS ipv4 in+out forwarding

Vector Packet Processing (VPP) Platform
• Disadvantage: large burden on the programmer
• Requires knowledge from different fields:

protocols, operating systems, processor
architecture, C compiler optimization….

• Some Magic Required for good performance

Some Magic Required

Manually fetch two packets

Consequence of being low-level

Ease of programmability sacrificed for performance at low-level
Can a high-level DSL compiler help?

+
Programmable Vector Packet Processor (PVPP)

Front-endCompiler
BMv2Mid-endCompiler

BMv2Back-endCompiler
JSON-VPPCompiler

VPPPlugin Directory

P4Program
VPP PluginCog Templates

Reference P4 Compiler (P4C)

JSON

C Files

PVPP structure

Standard compiler optimizations are also
applied, e.g. redundant table removal

PVPP
DPDK

MoonGenSender/Receiver
MoonGenSender/Receiver

10Gx3 10Gx3

M1 M2 M3
CPU: Intel Xeon E5-2640 v3 2.6GHzMemory: 32GB RDIMM, 2133 MT/s, Dual RankNICs: Intel X710 DP/QP DA SFP+ CardsHDD: 1TB 7.2K RPM NLSAS 6Gbps

Experimental Setup

Benchmark Application

IPv4_match
Match: ip.dstAddrAction: Set_nhopdrop

ParseEthernet/IPv4
Match: ip.dstAddrAction: Set_dmacdrop

Destination MAC
Match: egress_portAction: Set_dmacdrop

Source MAC

Baseline Performance
7.86

7.05

0
1
2
3
4
5
6
7
8
9

64

Thr
oug

hpu
t (M

pps
)

Packet Size (Bytes)

Single Node Multiple Node
64 byte packets, single 10G port

Vector Packet Processing (VPP) Platform

• Each node can execute
almost arbitrary C code
on vectors of packets

… dpdk-input

ip6-inputip4-input llc-input

ip6-lookup

ip6-rewrite-transmit

…

dpdk-output

Optimized Performance

7.86
9.25 9.51 9.51 9.58 10.01 10.21

7.05
8.38 8.50 8.80 8.89 9.02 9.20

0

2

4

6

8

10

12

Baseline RemovingRedundant Tables Reducing MetadataAccess Loop Unrolling BypassingRedundant Nodes Reducing PointerDereferences Caching Logical HWInterface

Thr
oug

hpu
t (M

pps
)

Single Node Multiple Node 64 byte packets, single 10G port

Scalability

8.52

17.03

26.40

35.83

44.23

53.11

8.14

16.57
24.14

33.41
40.69

49.34

0

10

20

30

40

50

60

1 2 3 4 5 6

Thr
oug

hpu
t (M

pps
)

Number of CPU cores

Single Node Multiple Node
64 byte packets across 3 x 10G ports

Performance Comparison
59.53

49.31

34.71
26.78

63.49

47.23

34.72
26.7830.22 30.22 30.20 26.78

0

10

20

30

40

50

60

70

64 128 192 256

Thr
oug

hpu
t (M

pps
)

Packet Size (Bytes)

PVPP PISCES (with Microflow) PISCES (without Microflow)

Future work
• Microbenchmarking VPP to inform VPP-specific optimizations
• P4 compiler annotations for low-level constructs
• Explore when multi-node compilation is beneficial for PVPP
• Demonstrate use cases where OVS microflow cache is

defeated – to show PVPP is just as programmable without
resorting to separated fast/slow path

Summary
• High-level DSLs are great for programmers of software

switches, but lack expressivity for optimizations.
• Low-level software switches such as VPP are performant but

hard to program.
• We propose that best of both is possible with PVPP.
• Comparable to state-of-art performance achieved but still

work in progress.

