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Why software data planes?

* VM hypervisors

* Cost savings with commodity general
purpose processing units — where

desired throughput < ~100 Gbps

* Prototyping protocol design

© Virtual Ports
o Physical Port

* Prototyping hardware DP architecture
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[1] PISCES. ACM SIGCOMM 2016.



Software switch DSLs
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Nice for programmers...

* Familiar and logical model in mind when programming,
e.g. match/action pipelines

 Can specify packet data without worrying about
implementation

* Portable code across platforms



Not so nice for compilers

* Abstract forwarding model not designed for
e.g. CPU-based architectures

* Limited in expressiveness
* Insulated from underlying low-level APIs

* Result: Difficult to realize full performance potential of
underlying hardware



Hypothesis

If software switches exposed more
low-level characteristics to
the data plane compiler

improvements are possible in
performance and features



Our contribution

* |dentify a software switch that can be programmed
at low-level w.r.t to the hardware architecture

* Create compiler targeting that switch to allow it to
support high-level data plane programs

 Compare performance



Target Switch: Vector Packet Processor (VPP)

 QOpen sourced by Cisco

* (Can be programmed at low-level

10

The Universal Dataplane

 Part of the FD.io project



Vector Packet Processing (VPP) Platform

dpdk-input

[TT T eed TT]

 Modular packet
processing node

graph abstraction




Vector Packet Processing (VPP) Platform

dpdk-input

[TT T eed TT]

e Each node can execute

c-input

almost arbitrary C code

on vectors of packets sy



Vector Packet Processing (VPP) Platform

dpdk-input

[TT T eed TT]

* Codeisdivided into

c-input

nodes to optimize for i-

and d-cache locality

ransmi



Vector Packet Processing (VPP) Platform

Packet Vector

[TT T eed TT]
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Vector Packet Processing (VPP) Platform

* Proven performancelll

* Multiple MPPS from a single x86 64 core
1 core: 9 MPPS ipv4 in+out forwarding
2 cores: 13.4 MPPS ipv4 in+out forwarding
4 cores: 20.0 MPPS ipv4 in+out forwarding

e > 100Gbps full-duplex on a single physical host

 Qutperforms Open vSwitch in various scenarios

[1] https://wiki.fd.io/view/VPP/What is VPP%3F



Vector Packet Processing (VPP) Platform

Disadvantage: large burden on the programmer

Requires knowledge from different fields:

protocols, operating systems, processor

architecture, C compi

Some Magic Requirec

er optimization....

for good performance



while (n_left_from >= 4 && n_left_to_next >= 2)
{
vlib_buffer_t * p@, * pl;
e e ip4_header_t * ip®, * ipl;
SO I I le IVI a g I C Re q u I re d __attribute_ ((unused)) tcp_header_t * tcp@, x tcpl;
ip_lookup_next_t next®, nextl;
ip_adjacency_t * adj@, * adjl;
ip4_fib_mtrie_t * mtrie@, * mtriel;
ip4_fib_mtrie_leaf_t leaf@, leafl;
ip4_address_t * dst_addr@, *xdst_addrl;
__attribute_ ((unused)) u32 pi@, fib_index®, adj_index®, is_tcp_udp®;
__attribute_ ((unused)) u32 pil, fib_index1, adj_index1, is_tcp_udpl;
u32 flow_hash_config@, flow_hash_configl;
u32 hash_c@, hash_cl;
u32 wrong_next;

vlib_buffer_t * p2, * p3;

p2 = vlib_get_buffer (vm, from[2]);

M anua I Iy fEtCh tWO packets p3 = vlib_get_buffer (vm, from[31);

vlib_prefetch_buffer_header (p2, LOAD);
vlib_prefetch_buffer_header (p3, LOAD);

CLIB_PREFETCH (p2->data, sizeof (ip@[@]), LOAD);
CLIB_PREFETCH (p3->data, sizeof (ip@[@]), LOAD);

pi@ = to_next[0] = from[@];
pil = to_next[1] = from[1];

p@ = vlib_get_buffer (vm, pi@);
1 = vlib_get_buffer (vm, pil);

o

Consequence of being low-level

ip@ = vlib_buffer_get_current (p@);
ipl = vlib_buffer_get_current (pl);



Ease of programmability sacrificed
for performance at low-level

Can a high-level DSL compiler help?

' —'ﬂ i
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[A / The Universal Dataplane

Programmable Vector Packet Processor
(PVPP)




PVPP structure
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Experimental Setup

MoonGen - 10Gx3 PVPP

10Gx3

Sender/Receiver | I
DPDK
M1 M2

CPU: Intel Xeon E5-2640 v3 2.6GHz

Memory: 32GB RDIMM, 2133 MT/s, Dual Rank
NICs: Intel X710 DP/QP DA SFP+ Cards

HDD: 1TB 7.2K RPM NLSAS 6Gbps

MoonGen
Sender/Receiver

M3




Benchmark Application

Parse
Ethernet/
IPv4

IPv4 _match

Match: ip.dstAddr
Action: Set_nhop
drop

A 4

Destination MAC

Match: ip.dstAddr
Action: Set_dmac
drop

\ 4

Source MAC

Match: egress_port
Action: Set_dmac
drop




Baseline Performance
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Vector Packet Processing (VPP) Platform

dpdk-input

[TT T eed TT]

e Each node can execute

c-input

almost arbitrary C code

on vectors of packets sy



Throughput (Mpps)

Optimized Performance
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Scalability

64 byte packets across 3 x 10G ports
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Future work

* Microbenchmarking VPP to inform VPP-specific optimizations

P4 compiler annotations for low-level constructs

 Explore when multi-node compilation is beneficial for PVPP

* Demonstrate use cases where OVS microflow cache is
defeated — to show PVPP is just as programmable without

resorting to separated fast/slow path



Summary

High-level DSLs are great for programmers of software
switches, but lack expressivity for optimizations.

Low-level software switches such as VPP are performant but
hard to program.

We propose that best of both is possible with PVPP.
Comparable to state-of-art performance achieved but still

work in progress.



