
PVPP: A Programmable Vector Packet Processor
Sean Choi, Xiang Long, Muhammad Shahbaz, Skip Booth, Andy Keep, John Marshall, Changhoon Kim

1. Problem Statement

2. Approach

3. Experimental Setup

4. Results

Experimental Server Specifications

CPU: Intel Xeon E5-2640 v3 2.6GHz
Memory: 32GB RDIMM, 2133 MT/s, Dual Rank
Hard Disk: 1TB 7.2K RPM NLSAS 6Gbps
NICs: Intel X710 DP/QP DA SFP+ Cards

L2-L3 Benchmark Application

• Match-action abstractions are the de facto for compiling
programmable data planes.

• Thus, switch targets expose just enough interfaces for
customizing the match-action pipeline, but not a lot more.

• What if the switch target exposes more complex interfaces for
interacting with the underlying architecture?
Finer tuning of compilers for increased performance!

Optimizations Throughput (Mpps) Increment (%)
PVPP Baseline 7.860 N/A
Exclude redundant tables 9.248 +17.7
Reducing metadata access 9.508 +2.81
Multiple packet processing 9.508 0
Bypassing interface-output node 9.583 +0.79
Reducing pointer dereference 10.008 +4.43
Caching logical HW interface 10.209 +2.01
Vanilla VPP Baseline 10.748

Compiler Optimization Results
(64 byte packets over a single 10G port)

Throughput Comparison with P4-OvS (PISCES)
(over all six 10G ports)

Experimental Platform Topology

• We present a programmable switch with programmable node
graph data plane abstraction called PVPP.

• PVPP is an extension for Vector Packet Processing(VPP).
• VPP exposes low-level interfaces for interacting directly with

the CPU and the memory.
• VPP’s unique node graph packet processing model allows

various number of packets to be processed arbitrarily at each
node with separate and isolated instructions.

• The experimental results on L2-L3 benchmark application show
that optimized PVPP has comparable throughput performance
with VPP and other P4 to software switch implementation.

P4 to VPP Compiler Flow Diagram

• PVPP is programmed via P4, a domain specific language
specially designed to easily describe data plane behavior.

• PVPP’s P4 compiler is highly configurable.
• Number of nodes for the given P4 file.
• Number of packets per vector or per iteration.

• P4 Headers map directly to PVPP structs for increased
readability and performance.

header_type ethernet_t {
fields {

dstAddr : 48;
srcAddr : 48;
etherType : 16;

}
}

typedef struct {
u8 dstAddr[6];
u8 srcAddr[6];
u16 etherType;

} p4_type_Ethernet_h;

Example of a P4 header to a PVPP C struct

P4 PVPP

Node Graph Packet Processing Abstraction

	Slide Number 1

